Fluid Dynamics: The Navier-Stokes Equations
ثبت نشده
چکیده
Classical mechanics, the father of physics and perhaps of scientific thought, was initially developed in the 1600s by the famous natural philosophers (the codename for ’physicists’) of the 17th century such as Isaac Newton building on the data and observations of astronomers including Tycho Brahe, Galileo, and Johannes Kepler. Classical mechanics concerns itself with the mathematical description of the motion of physical bodies, tying together the concepts of force, momentum, velocity, and energy to describe the behaviour of macroscopic objects [1]. Though it was developed nearly 400 years ago, many of the basic tenets of classical mechanics hold for common situations (excluding microscopic particle dynamics, high-velocity motion, and large-scale mechanics). Classical mechanics holds accurately for scales from 1 picometer (10−12 meters) to 10 meters. Due to its consistent success, classical mechanics has been widely studied by physicists and mathematicians alike. Even though it must rely on quantum mechanics for small-scale motion and special relativity for high-velocity travel, it is considered a mostly complete and solved set of theories. However, there is still one problem in classical mechanics which remains unsolved: the solution in fact, whether a solution is guaranteed to exist to the general case of the Navier-Stokes equations for fluid dynamics is unknown.
منابع مشابه
Investigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations
In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, AL2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displac...
متن کاملComputational Fluid Dynamics A Code for the Navier- Stokes Equations in! Velocity/Pressure Form!
متن کامل
A new discrete velocity method for Navier–Stokes equations
The relation between the Lattice Boltzmann Method, which has recently become popular, and the Kinetic Schemes, which are routinely used in Computational Fluid Dynamics, is explored. A new discrete velocity model for the numerical solution of Navier–Stokes equations for incompressible fluid flow is presented by combining both the approaches. The new scheme can be interpreted as a pseudo-compress...
متن کاملPerformance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect
In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. R...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملLattice Boltzmann Model for the Incompressible NavierStokes Equation
In the last decade or so, the lattice Boltzmann (LB) method has emerged as a new and effective numerical technique of computational fluid dynamics (CFD).(1-5) Modeling of the incompressible Navier-Stokes equation is among many of its wide applications. Indeed, the lattice Boltzmann equation (LBE) was first proposed to simulate the incompressible NavierStokes equations.(1) The incompressible Nav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013